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Solving the heat-protection problems for aircraft involves the determination of the temperature and 
density of the heat flux on a heated surface. A widely used method of their determination is the solution 
of the so-called conjugate problems of the mechanics of reacting media [1, 2], which allows one to take 
into account the heat-and-mass-transfer processes in the gaseous and solid phases and also their mutual 
effect on each other. As a rule, correct mathematical modeling of conjugate problems requires the use of 
complex mathematical models with a large set of parameters. Information on a number of model parameters 
is often either unavailable or not known exactly, and the numerical realization of the models requires extensive 
computational time resources. Another method of studying the heat effects on aircraft is the method of solving 
inverse heat-conduction problems (IHCPs) [3-8]. If additional experimental information on the temperature 
at a certain internal point, line, or body region is known, this method permits ignoring the heat and mass 
transfer in the gaseous phase. This saves computer time, increases the reliability of results, and sometimes 
refines the mathematical model of heat and mass transfer in the gaseous phase. However, since IHCPs are 
often ill-posed, their solution is difficult and requires the development of special regularization algorithms. 

Alifanov [9] presents the most detailed analysis of the methods of solution of IHCPs from the viewpoint 
of their practical use and emphasizes that  the iterative regularization method based on gradient algorithms is 
universal and promising. An algorithm of solving a three-dimensional boundary-value inverse problem for a 
multilayer hollow spherical segment using the method of iterative regularization is described by Alifanov and 
Nenarokomov [10]. Great prospects are offered by numerical methods of regularization (especially as applied 
to the solution of nonlinear multi-dimensional inverse problems based on complex mathematical models). 
Thus, Kuzin [11] describes a regularized numerical solution of a nonlinear two-dimensional IHCP for a body 
with rectangular cross section. 

The methods of IHCP solution offer an effective tool for studying thermal regimes on the aircraft 
surface when the only available experimental information is the temperature at some points inside the body 
or on part of its surface. These methods are a basis for the software of the gauges of unsteady heat fluxes. To 
obtain a spatial-temporal pattern of the heat-flux density, one usually has to solve a series of one-dimensional 
IHCPs or use a required number of one-dimensional heat flux gauges along the body contour. In the case 
where the heat flow along the body contour is substantial (drastically changing heat load along the contour, 
small radius of the body curvature, highly heat conducting material, etc.), such an approach can lead to large 
errors in determining the heat-flux density; they can be avoided or reduced using the methods of solving 
two-dimensional IHCPs. 

In this paper, using the methods of solving direct and inverse problems of heat conduction, we determine 
the heat loads in a supersonic flow around a spherically blunted cone and study the heat flow effect for materials 
with different thermal diffusivity on the accuracy of determining the temperature and heat-flux density on 
the aircraft surface. It is shown that, for highly heat conducting materials, neglect of the two-dimensional 
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character of heat transfer in the body leads to substantial errors in determining the indicated characteristics. 
We analyze the influence of the initial temperature  uncertainty on the solution of the two-dimensional IHCP. 

1. P h y s i c a l  a n d  M a t h e m a t i c a l  F o r m u l a t i o n  of  D i r e c t  a n d  I n v e r s e  P r o b l e m s .  Axisymmetric 
supersonic flow around a spherically blunted hollow cone with shell thickness L is considered. The heat transfer 
in the body is described in the natural  coordinate system by the following heat-conduction equations: for the 
spherical section, 

Ot Har - ' 

and for the conical section, 
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Here and below T is the tempera ture ,  fi = n/R2v and ~ = S/RN are the crossflow and streamwise coordinates, 
is time, r = rw/RN - fi cos(~r/2 -- ~) and / /1  = 1 - fi are the Lam6 coefficients, RN is the spherical bluntness 

radius, ~1 = ~r/2-fl, 13 is the cone angle, rto/RN = sin ~ for the spherical section, rw/RN = sin ~a + (~-~1)  sin/3 
for the conical section, p is the  density, % is the specific heat of the gas, c is the heat capacity of the solid 
body, X is the heat conductivity,  a is the heat-transfer coefficient, Hr is the recovery enthalpy, hw is the gas 
enthalpy on the wall, ~ is the emissivity factor, a is the Stefan-Boltzmann constant,  and qw = (u]%)(Hr - hto) 
and Qw = qw - e a t  4 are the convective and overall heat fluxes from the gaseous phase. 

We consider a mixed boundary layer flow: laminar in the spherical section around the stagnation point 
and turbulent  on the spherical bluntness periphery and on the cone. 

The value of Hr for the laminar flow regime is determined from the formula 

H, = H,o[(P,/P,o) ('Y-1)/'r + Pra/2(Udv,,,) 21 (1.9) 

o . - -  

and, for the turbulent  flow regime, it is determined from the equation 

H, = n,o[(PdP, o) ('~-x)/'y + Pr'/3(U,/vm)2]. (1.10) 

The heat-transfer coefficients are found using the data  of Zemlyanskii and Stepanov [12]. On the sphere 
periphery for the laminar flow regime, we have 

( /cp)ff) = (0.55 + 0.45 cos (1.11)  

(~/cp)(O) ~ 1.05uLOS(poo/RN)m (Uoo [km/sec], poo [kg. sec2/m4], and RN [m]), 
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and for the turbulent  regime, we have 

(~/cp)(~) = (3.75 sin ~ - 3.5 sin2()(t~/cp)(~,), 
1.25 0.s 0.2 (1.12) ((~/%)(~.) ~ 16.4U~ p~/[R1v (1 + h~/Hr 

In the conical section for the turbulent  flow regime, 

(a/cp)(~) = {2.2(PdPeo)(Ue/vm)/[k~ ~ ]}(a/cp)(~.), k = (3' - 1 + 2 / M ~ ) / ( 7  + 1). (1.13) 

The function Pe/Peo(~) for the sphere is calculated using the formula [13] 

Pe/Peo(~) = 1 - 1.17 sin2~ + 0.225 sin64; (1.14) 

the tabulated data  for the cone are borrowed from [14]. The enthalpy for air is hw = 965.5 Tw +0.0735T 2. Here 
and below, Ue is the velocity, P is the pressure, 7 is the ratio of specific heats, M is the Mach number,  and Pr 
is the Prandtl  number;  the subscripts "in" and "fin" denote the initial and final states, w the surface fi = 0, 
e and e0 the conditions at the outer  edge of the boundary layer and at the stagnation point,  respectively, and 
o~ the free-stream conditions. 

The direct heat-conduct ion problem (DHCP) consists in finding the function T(~, fi, t) tha t  satisfies 
Eqs. (1.1) and (1.2) in the open region D = {(~,fi, t): 0 < ~ < ~t, 0 < fi < L/RN, and 0 < t ~< tfin} and initial 
and boundary conditions (1.3)-(1.8) with relations (1.9)-(1.14) and is continuous together with its derivatives 
OT(~, ~, t)/O~ and OT(~, fi, t)/Ofi in the closed region D. 

When the heat flux from the gaseous phase is not known and we have to determine the temperature  
field T(~, fi, t) in the region b and the density of the overall Qw(~, t) and convective qw(~, t) heat fluxes over 
the surface fi = 0 from the known tempera ture  at the line fi = L/RIv 

T((, L/RN,t) = Tbound(~,t), (1.15) 

we obtain a two-dimensional inverse heat-conduction problem. 
2. A l g o r i t h m s  of  S o l v i n g  t h e  D i r e c t  a n d  I n v e r s e  P r o b l e m s .  Let us write the heat-conduction 

equations (1.1) and (1.2) in the general form 

i = + 

where Fi are determined from the above formulation of the problem. 
The  splitt ing method  is used for solving the two-dimensional DHCP [15]. The  one-dimensional heat- 

conduction equations obtained by splitt ing in each t ime half-step are solved by the iteration-interpolation 
method (IIM) [16] with iterations over the coefficients. In the first step, the calculations are performed in the 
fi direction, and in the second step in the ( direction. A special difference equation obtained on the basis of 
tIM [17] is used for t empera ture  calculations in the ( direction at the sphere-cone junction.  

The solution of the two-dimensional IHCP is based on the algorithm from [11]. Unlike in [11], a variable 
step along ( is used in the general case, and Tikhonov's regularization functional is supplemented by the term 
 (k3110r/0 ll + k4110 r/O  l12), which ensures regularization of the solution with respect to the variable (. 
Here 11- II is the norm in the space of functions integrated with the square L2[0, t~n], 6 is the regularization 
parameter, and k3 > 0 and k4 > 0 are non-negative numbers. For an unknown error of the initial temperature  
Tbound(~, r the optimal  approximation is chosen using the principle of quasi-optimal parameters,  and for a 
known error, it is chosen using the principle of residuals. 

3. N u m e r i c a l  R e s u l t s .  The  influence of heat flow along the contour of a spherically blunted cone 
on the accuracy of determining the temperature  and heat-flux density on the heated surface fi = 0 was 
numerically studied using the methods of solving direct and inverse problems of heat conduction. Using the 
above algorithms, we wrote codes for DHCP and IHCP calculations in FORTRAN for an IBM PC AT-386. 
We study materials with a wide range of thermophysical characteristics ,~, p, and c: a highly heat-conducting 
material [copper, A = 386 W / ( m .  K), p = 8950 kg /m a, and c = 376 J / ( k g .  K)], a low heat-conducting 
material [carbon plastic, ~ = 0.75 W / ( m - K ) ,  p = 1350 k g / m  a, and c = 1062 J / ( k g .  K)], and a material with 
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intermediate thermophysical characteristics [steel, A = 20 W / ( m .  K), p = 7800 kg /m 3, e = 600 J / ( k g .  K)]. 
The following parameters were used in the calculations: R/v = 0.0185 m, L = 0.005 m, ~ = 5% ~i = 6.59, 
Moo = 6, Uoo = 2078 m/sec, poo = 0.02 kg.  sec2/m 4, 3' = 1.4, Pr = 0.72, e = 0.7, He0 = 2.46- 106 m2/sec 2, 
and ~n = 300 K. 

The results of the solution of the DHCP are presented in Figs. 1 and 2. Figure la  and b shows the 
distributions of temperature Tw and heat-flux density Qw along the body contour for times t = 1 and 5 sec 
(curves 1 and 2), and for t ime t = tst (curves 3) (tst is the time required for the at tainment  of the steady 
regime) for copper, steel, and carbon plastic, which were obtained within the framework of two-dimensional 
(curves) and one-dimensional (points) mathematical models. As is evident from Fig. 1, the use of the heat- 
conducting material leads to a decrease in surface temperature by several hundred degrees !n the initial 
period of time. When the steady regime is attained, the decrease in the maximum surface temperature on the 
spherical section is about 200 K for copper. The surface temperature distribution along the contour, Tw(~), is 
monotonic at various times, and the curves level off as t ~ oo (solid curve 3). This process is related to heat 
flow to the conical part of the body and its subsequent re-emission from the body surface. 

The distributions T~(~) for steel and carbon plastic are in qualitative agreement with the behavior of 
the convective heat flux density along the body contour, qw(~). As might be expected, two-dimensionality 
is insignificant for carbon plastic, weakly manifested for steel, and important for copper. In the latter 
case, for one-dimensional and two-dimensional formulations of the problem, the results are qualitatively 
and quantitatively different. Thus, for copper at t = 5 sec, the maximum difference between temperatures 
calculated by the one-dimensional and two-dimensional models is ,-,550 K (the relative calculation error is 
~c~lc "~ 50%), and the heat flux-density difference is ,~2.2 �9 106 W / m  2 (ecalc ~ 60%). Note that,  for the 
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one-dimensional formulation of the problem using the boundary conditions for the steady-state regime, the 
solution is independent of the heat conductivity of the material and coincides with the radiation temperature 
of the surface found from the condition qw = eaT 4. 

The temperature Tw and the heat-flux density Qw versus time t are presented in Fig. 2a and b (notation 
coincides with Fig. 1). Figure 2a shows the function Tw(~i, t) for surface points fi = 0 with the coordinates 
(1 = 0 and ~2 = 6.59, and Fig. 2b shows the function Qw(~i, t) with the coordinates ~I = 0 and ~2 = 0.593. 

The results of solving the one-dimensional IHCPs in Fig. 2b are presented for ~ = 0. The surface 
temperature increases in time due to material heating and reaches an asymptotic value, whereas the heat-flux 
density decreases. At the same times, the highest tempera.ture and the lowest heat-flux density for ~ = 0 
are observed for the material with the lowest heat conductivity - -  carbon plastic. The fastest attainment 
of the asymptotic temperature value is also typical of this material. Neglect of heat flow along the body 
contour for copper leads to a more rapid growth in Tw and attainment of the asymptotic value at the frontal 
stagnation point and to a slower temperature growth on the periphery (~ = ~l). Two-dimensionality effects axe 
insignificant for steel and especially for carbon plastic. The temperature Tu, for ~ = 0 for copper determined 
with or without allowance for heat flow along the body contour can differ by more than 400 K for t = 10 sec, 
and the heat-flux density Qw can differ by several times. 

Thus, the analysis of Figs. 1 and 2 shows that, when solving the DHCP, one should take into account 
the two-dimensionality of heat-transfer processes in samples made of highly heat-conducting materials. In this 
case, one should expect a considerable influence of heat flow in determining the heat-flux density and surface 
temperature by the methods of solving inverse problems. In this connection, a copper sample will be used as 
the object of further investigation. 

Figures 3-6 show the results of the solution of the IHCP. The initial "experimental" information for 
solving both the one-dimensional and two-dimensional IHCPs was the temperature at the back surface of the 
shell Tbou,d(~, t) obtained by solving the two-dimensional DHCP (1.1)-(1.S) with relations (1.9)-(1.14). The 
functions Tw(~, t) and Qw(~, t) obtained by solving this DHCP will be further considered an exact solution of 
the IHCP. 

Figure 3 shows the heat-flux-density distribution along the body contour for times t = 1 and 5 sec 
(curves 1 and 2). The exact solution of the two-dimensional IHCP is shown in Figs. 3 and 4 by solid curves, 
the dashed curves describe the numerical solution of the two-dimensional IHCP, and the dotted curves show 
the solution of a series of one-dimensional problems along the body contour. For numerical experiments, the 
number of nodes of the difference grid for the variables ~, fi, and t was 11, 11, and 100, respectively. Figure 3 
shows that the numerical solution of the two-dimensional IHCP is stable and agrees well with the exact 
solution. At the same time, the value of Qw obtained by solution of the series of one-dimensional IHCPs can 
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differ from the exact value by more than a factor of 1.5. Even the qualitative behavior of Qw(() on the sphere 
changes (becomes monotonic). 

Figure 4 shows the curves of Qw(~i,t) for points of the heated surface with the coordinates ~1 = 0, 
~2 = 0.593, and ~3 = 1.48. We see that the curves of Qw(~,, t) found from the solution of the two-dimensional 
IHCP are in good agreement with the exact results, whereas those obtained by solution of the one-dimensional 
IHCP can differ from the exact solutions by several times. 

It follows from Figs. 3 and 4 that, first, the algorithm used for the solution of the two-dimensional 
IHCP allows us to reconstruct Q~(~, t) with fairly good accuracy. Second, the use of one-dimensional IHCPs 
with ~ <~ 4 leads to large errors in determining Qw(~, t), and, whence, it is necessary to use two-dimensional 
IHCPs. At the same time, the solution of the one-dimensional IHCP yields acceptable accuracy for peripheral 
sections of the conical surface (~ > 4), as is evident from the weak variation in the heat-flux density along the 
body contour in this region. This result could be expected on the basis of the results of the solution of the 
direct problem, which are presented in Fig. lb. 

Figures 5 and 6 show the effect of the initial temperature errors on the solution of the two-dimensional 
IHCP. Curves 1 and 2 in Fig. 6 correspond to t] = 2 sec and t2 = 8 sec, respectively. Disturbances distributed 
uniformly in time with a 3% maximum deviation from the current temperature value were superimposed on 
the temperature Tbound(~, t). Here the solid curves show the exact solution of the IHCP, the dotted curves 
describe the numerical solution of the IHCP (6 = 0) without smoothing the initial temperature, and the 
dashed curves show the numerical solution of the IHCP (~ = 0) with preliminary smoothing of the initial 
temperature using Tikhonov's regularization method with the regularization parameter chosen on the basis 
of the residual principle [18]. We see that the dependence Qw(t) found from the solution of the IHCP without 
temperature smoothing has an explicit unstable character and can take even negative values. The solution of 
the IHCP obtained with prior smoothing of the initial temperature is stable and agrees well with the exact 
solution. 

Thus, by solving direct problems, it is shown that the use of highly heat-conducting materials is 
promising for decreasing the maximum surface temperatures. The methods of solving the inverse problems of 
determining the heat-flux density are implemented. The influence of heat flow along the streamwise coordinate 
on the desired quantity Q~(~, t) is analyzed. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 93-01- 
17286). 
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